If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-24x+4=0
a = 1; b = -24; c = +4;
Δ = b2-4ac
Δ = -242-4·1·4
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{35}}{2*1}=\frac{24-4\sqrt{35}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{35}}{2*1}=\frac{24+4\sqrt{35}}{2} $
| 36=-5p+8p | | 14=5x-4+x | | -54=10a+8a | | 3(x+1÷4)=x+2 | | 4x+13+6x+2=14-13 | | x2=81+(x-1)^2 | | 3(x–1)=8+4 | | 7w+4w-2+7=5w+6w+5 | | x2=4/2 | | 72=2u+10u | | 1x+44=3x | | 21/15=14/n | | -(x+12)=2(3x-6) | | 35=-7+14p | | -5x-6(x+4)=-3(x-8) | | 2x+4+3=21 | | 3–2*(x+3)=x–18 | | 2x+4=83–2*(x+3)=x–18 | | 20/80=1.5/n | | 9x+-8x+7+-6=-7x+8x+7+-6 | | c2=111 | | -1+m=8 | | 3x+2x=5x2 | | 80=9s+7s | | -9+4x²=247 | | -2t-4t=12 | | -8=q/2-6 | | 3(7c-5)=18c+3c+9 | | y=8.9(9.8) | | y=4×-7 | | -3=10+r/4 | | 45x=1/2(50/15)x^2 |